Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The poplar bark storage protein gene (Bspa) promoter is responsive to photoperiod and nitrogen in transgenic poplar and active in floral tissues, immature seeds and germinating seeds of transgenic tobacco.

Identifieur interne : 004648 ( Main/Exploration ); précédent : 004647; suivant : 004649

The poplar bark storage protein gene (Bspa) promoter is responsive to photoperiod and nitrogen in transgenic poplar and active in floral tissues, immature seeds and germinating seeds of transgenic tobacco.

Auteurs : B. Zhu [États-Unis] ; G D Coleman

Source :

RBID : pubmed:11485196

Descripteurs français

English descriptors

Abstract

In Populus, seasonal nitrogen storage involves the accumulation of a 32 kDa bark storage protein (BSP) in the inner bark parenchyma and xylem rays. Poplar BSPs are encoded by a multigene family and one member, bspA, has been cloned and sequenced. The regulation of bspA was investigated by transforming either hybrid poplar or tobacco with a chimeric gene consisting of the 2.8 kb bspA promoter fused to the coding region of beta-glucuronidase (uidA). In transformed poplar, the bspA 2.8 kb promoter conferred both short-day (SD) and nitrogen (N) inducibility to GUS and activity was localized to the bark (primary and secondary phloem, and cortex) and xylem rays. Night-break treatments inhibited SD induction of GUS. Deletion of the 1.6 kb distal DNA sequences from the bspA promoter eliminated SD induction of GUS while some N induction was retained. These results indicate that although poplar BSP is encoded by a multigene family, transcriptional activation of bspA per se can account for bsp expression in bark and xylem rays in response to either SD or N treatment. These results also show that the elements responsible for SD or N induction are separable. Because of the long generation intervals associated with trees, the developmental regulation of bspA in flowers, developing seeds, and germinating seeds was investigated by transforming the 2.8 kb bspA-promoter::uidA chimeric gene into tobacco. The bspA promoter was active in developing tobacco floral tissues and in seeds during early stages of embryogenesis, decreased progressively during seed maturation and regained activity upon seed germination. Although seed storage proteins of poplar share some similarities to poplar BSP, the observed developmental expression patterns in tobacco are consistent with a role for bspA in vegetative rather than seed storage protein storage.

DOI: 10.1023/a:1010600504740
PubMed: 11485196


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The poplar bark storage protein gene (Bspa) promoter is responsive to photoperiod and nitrogen in transgenic poplar and active in floral tissues, immature seeds and germinating seeds of transgenic tobacco.</title>
<author>
<name sortKey="Zhu, B" sort="Zhu, B" uniqKey="Zhu B" first="B" last="Zhu">B. Zhu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Natural Resource Sciences and Landscape Architecture, University of Maryland, College Park 20742, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Natural Resource Sciences and Landscape Architecture, University of Maryland, College Park 20742</wicri:regionArea>
<orgName type="university">Université du Maryland</orgName>
<placeName>
<settlement type="city">College Park (Maryland)</settlement>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coleman, G D" sort="Coleman, G D" uniqKey="Coleman G" first="G D" last="Coleman">G D Coleman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11485196</idno>
<idno type="pmid">11485196</idno>
<idno type="doi">10.1023/a:1010600504740</idno>
<idno type="wicri:Area/Main/Corpus">004753</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004753</idno>
<idno type="wicri:Area/Main/Curation">004753</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004753</idno>
<idno type="wicri:Area/Main/Exploration">004753</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The poplar bark storage protein gene (Bspa) promoter is responsive to photoperiod and nitrogen in transgenic poplar and active in floral tissues, immature seeds and germinating seeds of transgenic tobacco.</title>
<author>
<name sortKey="Zhu, B" sort="Zhu, B" uniqKey="Zhu B" first="B" last="Zhu">B. Zhu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Natural Resource Sciences and Landscape Architecture, University of Maryland, College Park 20742, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Natural Resource Sciences and Landscape Architecture, University of Maryland, College Park 20742</wicri:regionArea>
<orgName type="university">Université du Maryland</orgName>
<placeName>
<settlement type="city">College Park (Maryland)</settlement>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coleman, G D" sort="Coleman, G D" uniqKey="Coleman G" first="G D" last="Coleman">G D Coleman</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="ISSN">0167-4412</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Regulation, Developmental (drug effects)</term>
<term>Gene Expression Regulation, Developmental (radiation effects)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Gene Expression Regulation, Plant (radiation effects)</term>
<term>Glucuronidase (genetics)</term>
<term>Nitrogen (pharmacology)</term>
<term>Photoperiod (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Toxic (MeSH)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>Recombinant Fusion Proteins (genetics)</term>
<term>Seeds (genetics)</term>
<term>Seeds (growth & development)</term>
<term>Sequence Deletion (MeSH)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (growth & development)</term>
<term>Transformation, Genetic (MeSH)</term>
<term>Trees (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (génétique)</term>
<term>Azote (pharmacologie)</term>
<term>Délétion de séquence (MeSH)</term>
<term>Glucuronidase (génétique)</term>
<term>Graines (croissance et développement)</term>
<term>Graines (génétique)</term>
<term>Photopériode (MeSH)</term>
<term>Protéines de fusion recombinantes (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Régulation de l'expression des gènes au cours du développement (effets des médicaments et des substances chimiques)</term>
<term>Régulation de l'expression des gènes au cours du développement (effets des radiations)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Régulation de l'expression des gènes végétaux (effets des radiations)</term>
<term>Tabac (croissance et développement)</term>
<term>Tabac (génétique)</term>
<term>Transformation génétique (MeSH)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux toxiques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glucuronidase</term>
<term>Plant Proteins</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Graines</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Promoter Regions, Genetic</term>
<term>Seeds</term>
<term>Tobacco</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Seeds</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arbres</term>
<term>Glucuronidase</term>
<term>Graines</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines végétales</term>
<term>Régions promotrices (génétique)</term>
<term>Tabac</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Azote</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Photoperiod</term>
<term>Plants, Toxic</term>
<term>Sequence Deletion</term>
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Délétion de séquence</term>
<term>Photopériode</term>
<term>Transformation génétique</term>
<term>Végétaux toxiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In Populus, seasonal nitrogen storage involves the accumulation of a 32 kDa bark storage protein (BSP) in the inner bark parenchyma and xylem rays. Poplar BSPs are encoded by a multigene family and one member, bspA, has been cloned and sequenced. The regulation of bspA was investigated by transforming either hybrid poplar or tobacco with a chimeric gene consisting of the 2.8 kb bspA promoter fused to the coding region of beta-glucuronidase (uidA). In transformed poplar, the bspA 2.8 kb promoter conferred both short-day (SD) and nitrogen (N) inducibility to GUS and activity was localized to the bark (primary and secondary phloem, and cortex) and xylem rays. Night-break treatments inhibited SD induction of GUS. Deletion of the 1.6 kb distal DNA sequences from the bspA promoter eliminated SD induction of GUS while some N induction was retained. These results indicate that although poplar BSP is encoded by a multigene family, transcriptional activation of bspA per se can account for bsp expression in bark and xylem rays in response to either SD or N treatment. These results also show that the elements responsible for SD or N induction are separable. Because of the long generation intervals associated with trees, the developmental regulation of bspA in flowers, developing seeds, and germinating seeds was investigated by transforming the 2.8 kb bspA-promoter::uidA chimeric gene into tobacco. The bspA promoter was active in developing tobacco floral tissues and in seeds during early stages of embryogenesis, decreased progressively during seed maturation and regained activity upon seed germination. Although seed storage proteins of poplar share some similarities to poplar BSP, the observed developmental expression patterns in tobacco are consistent with a role for bspA in vegetative rather than seed storage protein storage.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11485196</PMID>
<DateCompleted>
<Year>2001</Year>
<Month>08</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>08</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0167-4412</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>46</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2001</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>The poplar bark storage protein gene (Bspa) promoter is responsive to photoperiod and nitrogen in transgenic poplar and active in floral tissues, immature seeds and germinating seeds of transgenic tobacco.</ArticleTitle>
<Pagination>
<MedlinePgn>383-94</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>In Populus, seasonal nitrogen storage involves the accumulation of a 32 kDa bark storage protein (BSP) in the inner bark parenchyma and xylem rays. Poplar BSPs are encoded by a multigene family and one member, bspA, has been cloned and sequenced. The regulation of bspA was investigated by transforming either hybrid poplar or tobacco with a chimeric gene consisting of the 2.8 kb bspA promoter fused to the coding region of beta-glucuronidase (uidA). In transformed poplar, the bspA 2.8 kb promoter conferred both short-day (SD) and nitrogen (N) inducibility to GUS and activity was localized to the bark (primary and secondary phloem, and cortex) and xylem rays. Night-break treatments inhibited SD induction of GUS. Deletion of the 1.6 kb distal DNA sequences from the bspA promoter eliminated SD induction of GUS while some N induction was retained. These results indicate that although poplar BSP is encoded by a multigene family, transcriptional activation of bspA per se can account for bsp expression in bark and xylem rays in response to either SD or N treatment. These results also show that the elements responsible for SD or N induction are separable. Because of the long generation intervals associated with trees, the developmental regulation of bspA in flowers, developing seeds, and germinating seeds was investigated by transforming the 2.8 kb bspA-promoter::uidA chimeric gene into tobacco. The bspA promoter was active in developing tobacco floral tissues and in seeds during early stages of embryogenesis, decreased progressively during seed maturation and regained activity upon seed germination. Although seed storage proteins of poplar share some similarities to poplar BSP, the observed developmental expression patterns in tobacco are consistent with a role for bspA in vegetative rather than seed storage protein storage.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>B</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Natural Resource Sciences and Landscape Architecture, University of Maryland, College Park 20742, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coleman</LastName>
<ForeName>G D</ForeName>
<Initials>GD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C085168">bspA protein, Populus deltoides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.31</RegistryNumber>
<NameOfSubstance UI="D005966">Glucuronidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005966" MajorTopicYN="N">Glucuronidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017440" MajorTopicYN="N">Photoperiod</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010947" MajorTopicYN="Y">Plants, Toxic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012639" MajorTopicYN="N">Seeds</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017384" MajorTopicYN="N">Sequence Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="N">Transformation, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11485196</ArticleId>
<ArticleId IdType="doi">10.1023/a:1010600504740</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oecologia. 1990 Oct;84(3):391-397</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1989 Nov;1(11):1095-1109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12359887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 May;102(1):53-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1989 Nov;219(3):390-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2622451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1997 Oct;203(2):237-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9362569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1990 Jun;2(6):569-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2152178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1989 Mar 31;243(4899):1689-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2494701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Nov;97(3):1017-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Aug 5;267(22):15958-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1639823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Dec;20(6):1195-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1463855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1989 Oct;13(4):347-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2491661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1989 Jul;180(1):136-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2817336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Feb;98(2):687-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1983 Jul 1;132(1):6-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6312838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1989 Jun;178(3):275-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24212893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1993 Oct;23(1):135-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8106009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Mar;98(3):859-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1991 Dec;183(1):92-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24193538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Apr 20;230(4):1131-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8487298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Aug;4(2):343-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8220485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1995 Mar;27(5):933-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7766883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1992 Apr;11(3):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Jul;96(3):686-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Nov 1;38(4):565-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9747802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1992 Nov;4(11):1371-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1477553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1996 Feb;30(3):679-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8605318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Feb 11;219(4585):626-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6297005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1990 Jun;14(6):995-1006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2102881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1997 Aug;12 (2):281-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9301081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1996 Oct;16(10):833-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Mar 8;227(4691):1229-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17757866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Sep;106(1):211-215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Aug;102(4):1347-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8278552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1993 Mar;5(3):241-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8467221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1989 Jan;8(1):23-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16453867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1994 Mar;24(5):701-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8193295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1989 Sep;1(9):839-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2535526</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
<settlement>
<li>College Park (Maryland)</li>
</settlement>
<orgName>
<li>Université du Maryland</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Coleman, G D" sort="Coleman, G D" uniqKey="Coleman G" first="G D" last="Coleman">G D Coleman</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Zhu, B" sort="Zhu, B" uniqKey="Zhu B" first="B" last="Zhu">B. Zhu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004648 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004648 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11485196
   |texte=   The poplar bark storage protein gene (Bspa) promoter is responsive to photoperiod and nitrogen in transgenic poplar and active in floral tissues, immature seeds and germinating seeds of transgenic tobacco.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11485196" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020